Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

نویسندگان

  • Maillet
  • Coveney
چکیده

The behavior of two-dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice-gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focused on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects is described. The influence of a third component, namely, surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellization. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process-the invading fluid takes a more tortuous path to invade the porous medium-and reduces the oil recovery (the residual oil saturation increases).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice - Gas Simulations of Ternary Amphiphilic Fluid Flow in Porous Media ∗

We develop our existing two-dimensional lattice gas model to simulate the flow of single phase, binary immiscible and ternary amphiphilic fluids. This involves the inclusion of fixed obstacles on the lattice, together with the inclusion of “no-slip” boundary conditions. Here we report on preliminary applications of this model to the flow of such fluids within model porous media. We also constru...

متن کامل

Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media.

We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and...

متن کامل

Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids.

We simulate the dynamics of phase assembly in binary immiscible fluids and ternary microemulsions using a three-dimensional hydrodynamic lattice-gas approach. For critical spinodal decomposition we perform the scaling analysis in reduced variables introduced by Jury et al. [Phys. Rev. E 59, R2535 (1999)] and by Bladon et al. [Phys. Rev. Lett. 83, 579 (1999)]. We find a late-stage scaling expone...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

A three-dimensional lattice gas model for amphiphilic fluid dynamics

We describe a three-dimensional hydrodynamic lattice-gas model of amphiphilic fluids. This model of the non-equilibrium properties of oil-water-surfactant systems, which is a non-trivial extension of an earlier two-dimensional realisation due to Boghosian, Coveney and Emerton [2], can be studied effectively only when it is implemented using high-performance computing and visualisation technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 2 Pt B  شماره 

صفحات  -

تاریخ انتشار 2000